Skip to main content

Fórmula matemática simples de movimento simples


Qual é a fórmula da média móvel exponencial (EMA) e como é calculada a EMA. A média móvel exponencial (EMA) é uma média móvel ponderada (WMA) que dá maior ponderação ou importância aos dados de preços recentes do que a média móvel simples (SMA ) faz. A EMA responde mais rapidamente às mudanças de preços recentes do que a SMA. A fórmula para calcular o EMA envolve apenas usar um multiplicador e começar com o SMA. O cálculo para o SMA é muito direto. A SMA para um determinado número de períodos de tempo é simplesmente a soma dos preços de fechamento para esse número de períodos de tempo, divididos pelo mesmo número. Assim, por exemplo, um SMA de 10 dias é apenas a soma dos preços de fechamento dos últimos 10 dias, divididos por 10. Os três passos para o cálculo do EMA são: Calcular o SMA. Calcule o multiplicador para ponderar o EMA. Calcule o EMA atual. A fórmula matemática, neste caso para o cálculo de uma EMA de 10 períodos, parece assim: SMA: 10 soma de período 10 Cálculo do multiplicador de ponderação: (2 (período de tempo selecionado 1)) (2 (10 1)) 0,1818 (18,18) Cálculo EMA: (preço de fechamento-EMA (dia anterior)) x multiplicador EMA (dia anterior) A ponderação atribuída ao preço mais recente é maior por um período mais curto EMA do que por um período mais longo EMA. Por exemplo, um multiplicador de 18,18 é aplicado aos dados de preços mais recentes para um EMA de 10, enquanto que para um EMA de 20, apenas é utilizada uma ponderação de multiplicador de 9,52. Também ocorrem pequenas variações da EMA ao usar o preço aberto, alto, baixo ou médio, em vez de usar o preço de fechamento. Use a média móvel exponencial (EMA) para criar uma estratégia dinâmica de negociação forex. Saiba como EMAs podem ser utilizados muito. Leia Resposta Conheça as vantagens potenciais importantes de usar uma média móvel exponencial ao negociar, em vez de uma simples mudança. Leia Resposta Saiba mais sobre médias móveis simples e médias móveis exponenciais, o que esses indicadores técnicos medem e a diferença. Leia Resposta Conheça a fórmula para o indicador de dinâmica de divergência de convergência média móvel e descubra como calcular o MACD. Leia a resposta Saiba mais sobre os diferentes tipos de médias móveis, bem como os cruzamentos médios móveis e entende como eles são usados. Leia Resposta Descubra as principais diferenças entre os indicadores da média móvel exponencial e simples e as desvantagens que os EMAs podem. Read Answer O Sharpe Ratio é uma medida para calcular o retorno ajustado ao risco, e essa proporção tornou-se o padrão da indústria para tal. O capital de giro é uma medida da eficiência da empresa e da saúde financeira de curto prazo. O capital de giro é calculado. A Agência de Proteção Ambiental (EPA) foi criada em dezembro de 1970 sob o presidente dos Estados Unidos, Richard Nixon. O. Um regulamento implementado em 1 de janeiro de 1994, que diminuiu e eventualmente eliminou as tarifas para incentivar a atividade econômica. Um padrão contra o qual o desempenho de um fundo de segurança, fundo mútuo ou gerente de investimentos pode ser medido. A carteira móvel é uma carteira virtual que armazena informações do cartão de pagamento em um dispositivo móvel. Médias migratórias: quais são eles Entre os indicadores técnicos mais populares, as médias móveis são usadas para avaliar a direção da tendência atual. Todo tipo de média móvel (comumente escrito neste tutorial como MA) é um resultado matemático que é calculado pela média de um número de pontos de dados passados. Uma vez determinado, a média resultante é então plotada em um gráfico para permitir que os comerciantes vejam dados suavizados em vez de se concentrar nas flutuações de preços do dia-a-dia inerentes a todos os mercados financeiros. A forma mais simples de uma média móvel, apropriadamente conhecida como média móvel simples (SMA), é calculada tomando a média aritmética de um determinado conjunto de valores. Por exemplo, para calcular uma média móvel básica de 10 dias, você adicionaria os preços de fechamento dos últimos 10 dias e depois dividiria o resultado em 10. Na Figura 1, a soma dos preços nos últimos 10 dias (110) é Dividido pelo número de dias (10) para chegar à média de 10 dias. Se um comerciante deseja ver uma média de 50 dias, o mesmo tipo de cálculo seria feito, mas incluiria os preços nos últimos 50 dias. A média resultante abaixo (11) leva em conta os últimos 10 pontos de dados para dar aos comerciantes uma idéia de como um recurso tem um preço relativo aos últimos 10 dias. Talvez você esteja se perguntando por que os comerciantes técnicos chamam essa ferramenta de uma média móvel e não apenas um meio regular. A resposta é que, à medida que novos valores se tornam disponíveis, os pontos de dados mais antigos devem ser descartados do conjunto e novos pontos de dados devem vir para substituí-los. Assim, o conjunto de dados está constantemente em movimento para contabilizar os novos dados à medida que ele se torna disponível. Este método de cálculo garante que apenas as informações atuais estão sendo contabilizadas. Na Figura 2, uma vez que o novo valor de 5 é adicionado ao conjunto, a caixa vermelha (representando os últimos 10 pontos de dados) se move para a direita e o último valor de 15 é descartado do cálculo. Como o valor relativamente pequeno de 5 substitui o valor alto de 15, você esperaria ver a redução da média do conjunto de dados, o que faz, neste caso de 11 a 10. O que as médias móveis parecem Uma vez que os valores da MA foram calculados, eles são plotados em um gráfico e depois conectados para criar uma linha média móvel. Essas linhas curvas são comuns nos gráficos dos comerciantes técnicos, mas como eles são usados ​​podem variar drasticamente (mais sobre isso mais tarde). Como você pode ver na Figura 3, é possível adicionar mais de uma média móvel a qualquer gráfico ajustando o número de períodos de tempo usados ​​no cálculo. Essas linhas curvas podem parecer distrativas ou confusas no início, mas você se acostumará a elas com o passar do tempo. A linha vermelha é simplesmente o preço médio nos últimos 50 dias, enquanto a linha azul é o preço médio nos últimos 100 dias. Agora que você entende o que é uma média móvel e o que parece, bem, introduza um tipo diferente de média móvel e examine como isso difere da média móvel simples mencionada anteriormente. A média móvel simples é extremamente popular entre os comerciantes, mas, como todos os indicadores técnicos, tem seus críticos. Muitos indivíduos argumentam que a utilidade do SMA é limitada porque cada ponto na série de dados é ponderado o mesmo, independentemente de onde ocorre na sequência. Os críticos argumentam que os dados mais recentes são mais significativos do que os dados mais antigos e devem ter uma maior influência no resultado final. Em resposta a esta crítica, os comerciantes começaram a dar mais peso aos dados recentes, que desde então levaram à invenção de vários tipos de novas médias, sendo a mais popular a média móvel exponencial (EMA). (Para leitura adicional, veja Noções básicas de médias móveis ponderadas e qual a diferença entre uma SMA e uma EMA) Média móvel exponencial A média móvel exponencial é um tipo de média móvel que dá mais peso aos preços recentes na tentativa de torná-lo mais responsivo Para novas informações. Aprender a equação um tanto complicada para calcular um EMA pode ser desnecessário para muitos comerciantes, já que quase todos os pacotes de gráficos fazem os cálculos para você. No entanto, para você geeks de matemática lá fora, aqui está a equação EMA: Ao usar a fórmula para calcular o primeiro ponto da EMA, você pode notar que não há nenhum valor disponível para usar como EMA anterior. Este pequeno problema pode ser resolvido iniciando o cálculo com uma média móvel simples e continuando com a fórmula acima a partir daí. Nós fornecemos uma amostra de planilha que inclui exemplos da vida real de como calcular uma média móvel simples e uma média móvel exponencial. A Diferença entre o EMA e o SMA Agora que você tem uma melhor compreensão de como o SMA e o EMA são calculados, dê uma olhada em como essas médias diferem. Ao analisar o cálculo da EMA, você notará que é dada mais ênfase aos pontos de dados recentes, tornando-se um tipo de média ponderada. Na Figura 5, o número de períodos de tempo utilizados em cada média é idêntico (15), mas a EMA responde mais rapidamente aos preços em mudança. Observe como o EMA tem um valor maior quando o preço está subindo e cai mais rápido que o SMA quando o preço está em declínio. Essa capacidade de resposta é a principal razão pela qual muitos comerciantes preferem usar o EMA sobre o SMA. O que os dias diferentes significam As médias em movimento são um indicador totalmente personalizável, o que significa que o usuário pode escolher livremente o período de tempo que deseja ao criar a média. Os períodos de tempo mais comuns usados ​​em médias móveis são 15, 20, 30, 50, 100 e 200 dias. Quanto menor o intervalo de tempo usado para criar a média, mais sensível será para as mudanças de preços. Quanto maior o período de tempo, menos sensível ou mais suavizado, a média será. Não há um marco de tempo certo para usar ao configurar suas médias móveis. A melhor maneira de descobrir qual é o melhor para você é experimentar vários períodos de tempo diferentes até encontrar um que se encaixa na sua estratégia. Médias móveis: como usá-las. Eu tenho um valor contínuo pelo qual Id gostaria de calcular uma média móvel exponencial. Normalmente, Id apenas usa a fórmula padrão para isso: onde S n é a nova média, alfa é o alfa, Y é a amostra e S n-1 é a média anterior. Infelizmente, devido a várias questões, não tenho um tempo de amostra consistente. Eu posso saber que posso provar, no máximo, digamos, uma vez por milissegundo, mas devido a fatores fora do meu controle, talvez não consiga tirar uma amostra por vários milissegundos por vez. Um caso provavelmente mais comum, no entanto, é que eu amostras simples um pouco cedo ou tarde: em vez de amostragem a 0, 1 e 2 ms. Eu amostras em 0, 0.9 e 2.1 ms. Eu antecipo que, independentemente dos atrasos, minha freqüência de amostragem estará longe, muito acima do limite Nyquist, e, portanto, não preciso me preocupar com aliasing. Eu acho que posso lidar com isso de uma maneira mais ou menos razoável ao variar o alfa de forma apropriada, com base no período de tempo desde a última amostra. Parte do meu raciocínio que isso funcionará é que o EMA interpola linearmente entre o ponto de dados anterior e o atual. Se considerarmos o cálculo de uma EMA da seguinte lista de amostras em intervalos t: 0,1,2,3,4. Devemos obter o mesmo resultado se usarmos o intervalo 2t, onde as entradas se tornam 0,2,4, direito, se a EMA assumiu que, em t 2, o valor tinha sido 2 desde t 0. Isso seria o mesmo que o cálculo do intervalo t calculado em 0,2,2,4,4, o que não está fazendo. Ou isso faz sentido? Alguém pode me dizer como variar o alfa apropriadamente. Por favor, mostre seu trabalho. Isto é, Mostre-me a matemática que prova que seu método realmente está fazendo o que é certo. Perguntou Jun 21 09 às 13:05 Você não deve obter o mesmo EMA para diferentes entradas. Pense em EMA como um filtro, a amostragem em 2t é equivalente a amostragem descendente, e o filtro vai dar uma saída diferente. Isso é claro para mim, pois 0,2,4 contém componentes de freqüência mais alta que 0,1,2,3,4. A menos que a questão seja, como eu altero o filtro no tempo para fazer com que ele dê a mesma saída. Talvez eu esteja faltando algo ndash freespace 21 de junho 09 às 15:52 Mas a entrada não é diferente, ela é apenas amostrada com menos frequência. 0,2,4 em intervalos 2t é como 0,, 2,, 4 em intervalos t, onde o indica que a amostra é ignorada ndash Curt Sampson 21 de junho de 09 às 23:45 Esta resposta com base na minha boa compreensão de baixa passagem Filtros (a média móvel exponencial é realmente apenas um filtro de passagem simples de um único polo), mas a minha nebulosa compreensão do que você está procurando. Eu acho que o seguinte é o que você quer: primeiro, você pode simplificar sua equação um pouco (parece mais complicado, mas é mais fácil no código). Vou usar Y para saída e X para entrada (em vez de S para saída e Y para entrada, como você fez). Em segundo lugar, o valor de alpha aqui é igual a 1-e-Deltattau onde Deltat é o tempo entre amostras, e tau é a constante de tempo do filtro passa-baixa. Eu digo igual em citações porque isso funciona bem quando Deltattau é pequeno em comparação com 1, e alpha 1-e-Deltattau asymp Deltattau. (Mas não é muito pequeno: você terá problemas de quantificação e, a menos que você recorra a algumas técnicas exóticas, você geralmente precisa de N bits extras de resolução em sua variável de estado S, onde N - log 2 (alfa).) Para valores maiores de Deltattau O efeito de filtragem começa a desaparecer, até chegar ao ponto em que o alfa é próximo de 1 e você basicamente está apenas atribuindo a entrada para a saída. Isso deve funcionar corretamente com valores variáveis ​​de Deltat (a variação de Deltat não é muito importante, desde que o alfa seja pequeno, caso contrário, você irá encontrar alguns alianças de Nyquist raras, e se você estiver trabalhando em um processador onde a multiplicação É mais barato do que a divisão, ou questões de ponto fixo são importantes, precalcular omega 1tau e considerar tentar aproximar a fórmula para alfa. Se você realmente deseja saber como derivar a fórmula alfa 1-e-Deltattau, considere sua fonte de equação diferencial: qual, quando X é uma função de etapa de unidade, tem a solução Y 1 - e - ttau. Para pequenos valores de Deltat, a derivada pode ser aproximada por DeltaYDeltat, produzindo Y tau DeltaYDeltat X DeltaY (XY) (Deltattau) alfa (XY) e a extrapolação de alfa 1-e-Deltattau vem de tentar combinar o comportamento com o Caso da função do passo da unidade. Você poderia elaborar o quottrying para combinar a parte do comportamento. Compreendo sua solução de tempo contínuo Y 1 - exp (-t47) e sua generalização para uma função escalonada com magnitude x e condição inicial y (0). Mas eu não estou vendo como juntar essas idéias para alcançar seu resultado. Ndash Rhys Ulerich 4 de maio 13 às 22:34 Esta não é uma resposta completa, mas pode ser o começo de uma. É tão longe quanto eu consegui com isso em uma hora ou mais de jogar Im publicando isso como um exemplo do que eu procuro, e talvez seja uma inspiração para outros que trabalham no problema. Eu começo com S 0. Que é a média resultante da média anterior S -1 e da amostra Y 0 tomada em t 0. (T 1 - t 0) é o meu intervalo de amostra e o alfa está configurado para o que for apropriado para esse intervalo de amostra e o período durante o qual eu desejaria a média. Eu considerei o que acontece se eu perder a amostra em t 1 e, em vez disso, tenho que fazer com a amostra Y 2 tomada em t 2. Bem, podemos começar expandindo a equação para ver o que aconteceria se tivéssemos cometido 1: percebo que a série parece se estender infinitamente dessa maneira, porque podemos substituir o S n no lado direito indefinidamente: Ok , Então não é realmente um polinômio (eu tolo), mas se multiplicarmos o termo inicial por um, então vemos um padrão: Hm: é uma série exponencial. Surpresa Quelle Imagine que sai da equação para uma média móvel exponencial Então, de qualquer forma, eu tenho esse x 0 x 1 x 2 x 3. A coisa está indo, e estou seguro de que eu estou cheirando e ou um logaritmo natural dando uma volta por aqui, mas não consigo lembrar de onde eu estava indo antes que eu estivesse sem tempo. Qualquer resposta a esta pergunta, ou qualquer prova de correção de tal resposta, depende muito dos dados que você está medindo. Se suas amostras foram tiradas em t 0 0ms. T 1 0.9ms e t 2 2.1ms. Mas sua escolha de alfa é baseada em intervalos de 1 ms, e, portanto, você quer uma alfa n localmente ajustada. A prova de correção da escolha significaria conhecer os valores da amostra em t1ms e t2ms. Isso leva à questão: você pode interpor seus dados de forma razoável para ter suposições sãs do que os valores intermediários podem ter sido ou você pode mesmo interpolar a média em si. Se nenhum desses é possível, então, até onde eu vejo, a lógica A escolha de um valor intermediário Y (t) é a média calculada mais recentemente. Isto é, Y (t) asymp S n onde n é maxmial tal que t n ltt. Esta escolha tem uma conseqüência simples: deixe o alfa sozinho, independentemente da diferença horária. Se, por outro lado, é possível interpolar seus valores, então isso lhe dará amostras intermediárias de intervalo constante. Por último, se é possível interpolar a própria média, isso tornaria a questão sem sentido. Respondeu Jun 21 09 às 15:08 balpha 9830 26.8k 9679 10 9679 85 9679 117 Eu pensaria que eu posso interpolar meus dados: dado que I39m amostragem em intervalos discretos, já estou fazendo isso com uma EMA padrão, suponha que eu precise Um quotproofquot que mostra que ele funciona, bem como um EMA padrão, que também produzirá um resultado incorreto se os valores não estiverem mudando bastante devagar entre os períodos de amostra. Ndash Curt Sampson 21 de junho 09 às 15:21 Mas isso é o que eu digo: se você considerar a EMA uma interpolação de seus valores, você será feito se você deixar o alfa como é (porque inserir a média mais recente como Y não altera a média) . Se você diz que você precisa de algo que funciona bem como um EMAquot padrão - o que está errado com o original A menos que você tenha mais informações sobre os dados que você está medindo, quaisquer ajustes locais para alfa serão, na melhor das hipóteses, arbitrários. Ndash balpha 9830 21 jun 09 às 15:31 Eu deixaria o valor alfa sozinho e preencheria os dados faltantes. Como você não sabe o que acontece durante o tempo em que você não pode mostrar, você pode preencher essas amostras com 0s ou manter o valor anterior estável e usar esses valores para o EMA. Ou alguma interpolação para trás, uma vez que você tenha uma nova amostra, preencha os valores em falta e recomponha a EMA. O que eu estou tentando conseguir é que você tem uma entrada xn que tem buracos. Não há como contornar o fato de você estar faltando dados. Então, você pode usar uma retenção de ordem zero, ou configurá-la para zero, ou algum tipo de interpolação entre xn e xnM. Onde M é o número de amostras em falta e n o início da lacuna. Possivelmente, mesmo usando valores antes de n. Respondeu 21 de junho de 09 às 13:35 De passar uma hora ou mais por um pouco com as matemáticas para isso, acho que simplesmente variar o alfa realmente me dará a interpolação adequada entre os dois pontos de que você fala, mas em um Muito mais simples. Além disso, acho que a variação do alfa também tratará de forma adequada as amostras colhidas entre os intervalos de amostragem padrão. Em outras palavras, estou procurando o que você descreveu, mas tentando usar matemática para descobrir a maneira simples de fazê-lo. Ndash Curt Sampson 21 de junho 09 às 14:07 Eu não acho que há uma besta tão boa quanto a interpolação quotproper. Você simplesmente não sabe o que aconteceu no momento em que você não está amostragem. A interpolação boa e ruim implica algum conhecimento do que você perdeu, já que você precisa medir contra isso para julgar se uma interpolação é boa ou ruim. Embora seja dito, você pode colocar restrições, ou seja, com aceleração máxima, velocidade, etc. Eu acho que se você sabe como modelar os dados que faltam, então você apenas modelaria os dados ausentes, então aplique o algoritmo EMA sem mudança, em vez disso Do que mudar alfa. Apenas meu 2c :) ndash freespace 21 de junho 09 às 14:17 Isto é exatamente o que eu estava recebendo na minha edição para a pergunta há 15 minutos: você simplesmente não sabe o que aconteceu no momento em que você não está amostragem, mas isso é verdade Mesmo se você provar em cada intervalo designado. Assim, a minha contemplação de Nyquist: enquanto você sabe que a forma de onda não altera as direções mais do que todas as amostras, o intervalo de amostra real não deve ser importante e pode variar. A equação EMA parece-me exatamente calcular como se a forma de onda mudasse linearmente do último valor de amostra para o atual. Ndash Curt Sampson 21 de junho 09 às 14:26 Eu não acho que isso seja verdade. O teorema de Nyquist exige um mínimo de 2 amostras por período para poder identificar o sinal de forma exclusiva. Se você não fizer isso, você obtém aliasing. Seria o mesmo que a amostragem como fs1 por um tempo, então fs2, então voltar para fs1, e você obtém aliasing nos dados quando você amostra com fs2 se fs2 estiver abaixo do limite de Nyquist. Eu também devo confessar que não entendo o que você quer dizer com quotwaveform mudanças linearmente da última amostra para onequot atual. Você poderia explicar Cheers, Steve? Ndash freespace Jun 21 09 às 14:36 ​​Isso é semelhante a um problema aberto na minha lista de tarefas. Eu tenho um esquema elaborado até certo ponto, mas não tenho trabalho matemático para apoiar esta sugestão ainda. Atualização do sumário do amplificador: Gostaria de manter o fator de suavização (alfa) independente do fator de compensação (que eu me refiro como beta aqui). A excelente resposta já aceita aqui é excelente para mim. Se você também pode medir o tempo desde a última amostra (em múltiplos arredondados de seu tempo de amostragem constante - então 7.8 ms uma vez que a última amostra seria de 8 unidades), isso poderia ser usado para aplicar várias vezes o alisamento. Aplique a fórmula 8 vezes neste caso. Você efetivamente fez um alisamento mais inclinado para o valor atual. Para obter um melhor alisamento, precisamos ajustar o alfa ao aplicar a fórmula 8 vezes no caso anterior. O que essa aproximação de suavização perderá. Já faltou 7 amostras no exemplo acima. Isso foi aproximado no passo 1 com uma re-aplicação achatada do valor atual 7 vezes adicionais. Se definimos um fator de aproximação beta que será aplicado junto com o alfa (Como alfabeta em vez de apenas alfa), estaremos assumindo que as 7 amostras perdidas estavam mudando suavemente entre os valores de amostra anteriores e atuais. Respondeu 21 de junho 09 às 13:35 Eu pensei sobre isso, mas um pouco de amaldiçoamento com a matemática me levou ao ponto em que eu acredito que, ao invés de aplicar a fórmula oito vezes com o valor da amostra, posso fazer um cálculo De um novo alfa que me permitirá aplicar a fórmula uma vez e me dar o mesmo resultado. Além disso, isso trataria automaticamente a questão de amostras compensadas de tempos de amostra exatos. Ndash Curt Sampson 21 de junho 09 às 13:47 O único aplicativo está bem. O que ainda não tenho certeza é o quanto é boa a aproximação dos 7 valores em falta. Se o movimento contínuo faz com que o valor flui muito nos 8 milésimos de segundo, as aproximações podem estar bastante fora da realidade. Mas, então, se você estiver amostragem a 1 ms (resolução mais alta, excluindo as amostras atrasadas), você já descobriu que o jitter dentro de 1 ms não é relevante. Esse raciocínio funciona para você (eu ainda estou tentando me convencer). Ndash nik Jun 21 09 às 14:08 Direita. Esse é o fator beta da minha descrição. Um fator beta seria computado com base no intervalo de diferença e nas amostras atual e anterior. O novo alfa será (alfabeta), mas será usado apenas para essa amostra. Enquanto você parece ser o alfa na fórmula, eu tende para o alfa constante (fator de suavização) e um beta calculado de forma independente (um fator de sintonia) que compensa amostras perdidas agora. Ndash nik Jun 21 09 às 15:23

Comments

Popular posts from this blog

Forex negociação vezes domingo no Brasil

Horas de Forex O mercado de Forex é o único mercado de 24 horas, abrindo domingo 5 PM EST, e funcionando continuamente até sexta-feira 5 PM EST. O dia de Forex começa com a abertura de mercado de Forex de Sydneys (Austrália) em 5:00 PM EST (10:00 PM GMT 22:00), e termina com o fechamento do mercado de New Yorks, um dia depois, em 5:00 PM EST (10:00 PM GMT 22:00), reabrir imediatamente em Sydney reiniciar a negociação. Nota: EST é uma abreviatura para Eastern Standard Time (por exemplo, New York), enquanto GMT é uma abreviação para Greenwich Mean Time (por exemplo Londres). Os principais mercados de Forex, na ordem de seus horários de abertura, são: Sydney, Tóquio, Frankfurt, Londres e Nova York. No gráfico abaixo, você pode ver o curso horário do dia de negociação Forex. Nota: O mercado de Tokyos não inicia no fuso horário apropriado devido ao fato de que ele abre uma hora após os outros mercados (9:00 AM Hora Local, enquanto outros abrem às 8:00 AM Horário Local). A tabela a seguir il...